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KEYWORDS: Apertures, Compatibility, Confidence limits, Graphical display, Partial limits,
SCL’s, SPL’s, SQL"s, Saskatchewan data, Severe limits, Significance of lack of fit,
Simultaneous limits, Tight limits.

1. Introduction

A special case of importance in the display of simultaneous intervals (SCL's or SPL’s)
arises when the results of measurement or observations on y at corresponding values of x are
to be displayed with the intent of understanding what they say about (a) the plausibility of the
existence of a smooth dependence on x of the underlying value ave{y [ x} (the average that
would have been found were it possible to repeat the measurement y very many times for the
same x), and (b) which smooth dependencies seem to be plausible in view of the data.

The display techniques focusing on matched SCL’s and SPL’s developed in Technical
Report No. 300 [Tukey 1990] are not particularly useful here. The aperture (pencil-point")
techniques of Hoaglin and Tukey (1985n) suggest very useful approaches, although, as
reported in that reference, these techniques have so far been directed toward the combination of
SCL’s and ICL’s. The present account builds on all the insights thus developed, seeking for
simplicity and treating related problems as they arise.

2. Intervals and apertures

We assume that our y 's come with a useful estimate of their uncenainty, useful in the
sense of providing (approximate, of course) probability statements about ranges of plausible
values for what they measure. Thus we might want to state an ICL (individual confidence
interval) for each point, for example that, we have

95% confidence that 11.2 < ave(y| x;} £ 12.8

How should we display such a statement graphically?

The classical approach is 10 picture one interval from 11.2 to 12.8 with a line segment or
bar, perhaps decorated with arrowheads, etc. This stresses what we do nor know by stressing
the variety of possible values that are plausible. This is perhaps the natural first step beyond

Prepared in connection with research at Princeton University sponsored by the Army Research Office
(Durham), DAALO3-88-K-0045.
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the most naive picture - - in our example a dot at or near the midpoint of the ICL, 12.0. But it
is not a good way to go on to more complex situations.

A better approach for many purposes is to plot what we know rather than what we do not
know - - in our example to draw something from a low value to 11.2 and another something
from 12.8 to a high value; thus "blackening” the implausible values for ave{y| xo} and
showing our range of uncertainty by an aperture - - a "hole in the fence"! A form of this,
using "pencil point” to combine ICL's and SCL's, was proposed by Hoaglin and Tukey
(1985n) We deal here with a similar problem but in a different context. So we are led to
somewhat different graphical display that, however, use the same approach - - apertures.

3. Classes of questions

If we have a set of (x,y) pairs, which might reasonably represent more or less random
fluctuations around a systematic dependence, there is a natural set of pairs of questions that can
be asked atout the supposed dependence, each pair of the form:

e Is it reasonable ihat there is a dependence of a specified class?
e If so, what subclass of dependencies of this class is reasonable?

The classes for which we are most likely to ask these pairs of questions are, in order, from
simple to complicated:

1) constant dependence (ave{y| x} = Cq for all x, and some unknown Cp)
2) linear dependence (ave{y| x} = C¢ + Cx, for all x, and some unknown Cy, C,)
3) some special dependence (according to subject-matter field)

4) monotone dependence (either ave{y | x,} < ave{y| x,} whenever x, < x,, or
ave{y| x,} 2 ave{y| x,] whenever x, < x,)

5) dependence monotone, except for one maximum or one minimum (sense of
monotonicity changes at that extremum).

It is much easier to continue this list than to deal with the probability problems that (4) or (5)
suggest. So we leave extensions to the reader.

4. The probabilistic situation

An important consideration is the difference between

A) Is this specific dependence of the chosen class plausible?
and

B) Is any dependence of the chosen class plausible?

So far as general situations go, the naive way to answer (B) amounts to asking (A), in parallel,
for each possible specific dependence of the class, and announcing whether any of them is

June 13, 1990




plausible. Quite naive, but not best.

In the simplest case, where we ask if ave{y| x} might be the same for all x, if we
represent each measurement or observation by an aperture, Technical Report No. 300 (Tukey
1990), made a clear distinction between (tight or severe) SCL’s and SPL’s. Here SCL's are
simultaneous confidence limits, which, in our present style, would surround each data point
with an aperture - - an SCA - - such that a value of C is compatible with that measurement if
the horizontal line at height C passes through the aperture. SPL'’s, on the other hand, are
simultaneous partial limits which, in our present style would correspond to narrower apertures -
- SPA’s - - such that two y's might have the same underlying value if there is some horizontal
line that passes through both apertures.

For horizontal lines, the best answer - - or class of answers - - to (B) is thus provided by
tight simultaneous partial apertures (SPA’s), just as the best answer - - or class of answers - -
to (A) for horizontal lines is provided by tight simultaneous confidence apertures (SCA’s).

*  glanting lines  *
Consider next the case of slanting lines, where

ave{y| x} = Cq + C(x—x00)

If we knew the slope, C;, we could replace y by y — C(x—x¢g), reducing the problem to the
case of horizontal lines, just discussed. Thus the answers to

A) Is this specific straight-line dependence (with slope ¢ ) plausible?
and

B) Is any straight line dependence (with slope c) plausible?

are best given, by passage or non-passage of a line of the given slope, respectively, through
(A) simultaneous confidence apertures or (B) simultaneous partial apertures.

If, as is usually the case, we do not know the slope, we cannot confine our attention to
any one slope. Thus the chance that a line will pass all simultaneous partial apertures, when
all the values of (x, ave{y| x}) lie on some unknown line, will be larger than SPL nominal.
This will happen because (a) the chance that a line of correct slope will pass equals the
nominal and (b) it is possible that, while no line of correct slope passes, one of incorrect slope
does pass.

Since Q follows P in the alphabet, let us define tight SQL's and SQA'’s to be the
limits or apertures such that the chance, in the null situation, of a line passing all of them is the
nominal level. Then

coefficient of tight SQL < coefficient of tight SPL

June 13, 1990




and

(tight) SQ-apertures are only part of (tight) SP-apertures

For general k& - - and for general patterns for the k x's - - there seems to be no available
tabulation (or useful closed form expression) for the tight SQL coefficients. (If we had
answers for k equally spaced x’s, however, we would probably be in relatively good shape.)
For k=3 and equally spaced x 's, however, it is easy to calculate the SQL coefficients. If we
do this (see Section 10) and go on to ask what approximation is suggested for more general k,
we are led to believe that

tight SPL coefficient — .68 (severe SCL .oefficient — severe SPL coefficient)

is probably not a bad approximation to

tight SQL coefficient.

(See Section 11 for a different approximation.

We return below, in Section 12, to the question of severe SQL coefficients, which seem
to have quite limited utility.

S. Display choices

In Technical Report 300, we argued the advantages of a horizontal bar in displaying SP
intervals and a point in displaying SC intervals. This led to a double open triangle arrowhead
style of display. If we convert this directly from intervals to apertures, we move from the style
of the left-hand side of exhibit 1 to the style of that exhibit’s center. The results are relatively
effective so long as only horizontal lines are candidates to pass through the apertures. (Since
this is the case where SP apertures are appropriate, this is not a serious restriction.)

exhibit 1
about here

When we want to go to SQ apertures, plausibly by adding to what is already displayed,
we want:

e a pointed glyph, since lines need avoid the aperture only at its own value of x,
e a reasonably emphatic glyph,
e a glyph that directs our attention inward.

June 13, 1990
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exhibit 1

Evolution of intervals to aperiures

SC and SP
intervals

\ —~—— J \. N _./
SC and SP SC, SP and SQ
apertures

apertures
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The style of the right-hand side of exhibit 1 meets all three of these desiderata, while
preserving the double open triangles we chose earlier for SC and SP.

In the half-open quadrilaterals (hoquas) of the new style:

e the black tip marks the end of the SQA

e the black-white division marks the end of the SPA

e the white tip marks the end of the SCA.
We shall use this style until a better one is found, using our roughly approximate SQA's until
better coefficients are availablc. When, as, and if, such coefficients are available for slanting
lines we expect to use them instead. When the class of candidates is broader than all straight
lines, we will want to use even narrower apertures. The time when we will have
corresponding coefficients for each of several classes of coefficients seems uncertain. The best
temporary solution seems to be to use the best available SQ coefficients, and to continue to
carry along a substantial grain of salt.

6. The Saskatchewan data

Brillinger (1990) has recently illustrated a moderately complicated analysis of
geographically aggregated data, using 1986 births in the 18 Census divisions of Saskatchewan,
as an example. We will use the same data as an example of a simpler analysis using SQ
apertures.

* the data *

The basic population counts, by division, for the division as a whole, and for the 3
largest places in the division (of size 1,000 or more) is set out in exhibit 2. The last two
columns show the ratios of (a) population of largest place and (b) sum of populations of 3
largest places to the total population. We will return to these and related figures shortly.

exhibit 2
about herc

The minimum instability we can plausibly apply to a number of births - - unless we take
a narrowly historical view - - is that of the Poisson distribution. To more accuracy than we
are likely to need in the present example, a Poisson distribution corresponds to

score = Y2 + 4(count)

following a Gaussian distribution with unit variance.

Thus, given a coefficient A for some form of simultaneous aperture, we can locate the
ends of the aperture by applying the inverse transformation

June 13, 1990




Division

O 00 ~J O L A Wi~

Largest

9K 17 Estevan

9K52 Weyburn
2K92 Assiniboine
2K47 Maple Creek
5K09 Melville
162K61 Regina
33K94 Moosejaw
14K 75 Swift Current
15K15 Yorkton
2K15 Wynyard
154K2 Saskatoon
3K 56 Battleford
3K97 Kindersley
6KO01 Melfort
31K38 Prince Alben
14K03 N. Battleford
6K03 Lloyd Minster
1K64 Creighton

L/T = ratio of largest to

- ba -

exhibit 2

Populations in the 18 census divisions
(3K57 means "3 thousand, 570", e.)

Next

1K19 Oxbow
1K01 Radvilie
1K34 Gravelbourg
2K11 Shaunavon
3KO06 Esterhazy
1K89 Indian Head
1K02 Herbent
1K41 Eston

2K69 Kamsack
1K49 Wadena
2K08 Warman

2K 66 Rosetown
2K41 Unity

4K38 Nipawin
4K7 Humboldt
1K23 Shellbrook

3K86 Meadow Lake

?

total

Third
1K07 Carlyle
)

1K03 Coronach
?
2K 58 Moosomin
1K83 Font Qu’Appelle
l‘)

1K11 Leader
2K67 Canora
1K45 Foam Lake
1K97 Outlook
2KS56 Biggar
1K50 Wilkie

3K 11 Tisdale
1K61 Rosthern

9

1K00 Maidstone
?

3/T = ratio of sum of three largest with (?) filled in as 0K90 = 900)

Total

32,771
26,677
26,367
14,659
41,202
201,021
52,875
35,146
44918
25,121
192,551
25493
27375
47467
79,980
39,905
35481
25,304

L/T

.28
36
.14
17
a2
81
64
42
34
09
80
14
14
13
39
35
17
06

3T

28
43
.26
37
26
.83
68
49
A6

p

ho

.82
34
.28
28
47
40
3
14
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corresponding count = ((score)? —2)/4

to the ends of the aperture

observed score th

in terms of the score. To get ends of an aperture for birth rate we need to divide the
corresponding counts by the number of women of appropriate age (Brillinger used the 25-29
age group).

Tumning back to Technical Report 300, with k=18 and v==> (under the Poisson
assumption, the variance is known!), we find coefficients of $2.98 for severe SC, £2.53 for
severe SP and 1£2.46 for tight SP. Our working approximation now gives £2.16 for SQ.
Accordingly, exhibit 3 gives numbers of women and births (both of which have been modified,
see Brillinger 1990 for details, for privacy reasons) overall birth rates, and the 3 sets of birth
rate intervals.

exhibit 3
about here

*  urbanicity vs. rurality  *

As Brillinger noted, binth rates tended to be low in more urban divisions, high in more
rural ones. If we are to picture what we know with a well-placed set of apertures, we need an
x -variable that reflects rurality vs. urbanness. Kafadar and Tukey (1991, and papers in
preparation) have faced this question with regard to county-by-county death rates from various
forms of cancer. Their conclusions include:

e steps of 1/2 in the logarithm to the base 2 of the size of the largest place ir the county

seems to do quite well (Kafadar and Tukey 1991),

e especially in certain suburban areas, we do well to allow the sizes of the 2*¢ and 3™

largest places to influence the classification;

e working with the square-root cf the sums of squares of the 3 largest places seems one

reasonable approach.

Thus it seemed plausible to approach the Saskatchewan data in a somewhat similar way.

* Zipfing the tail =

The most easily available place-by-place population data is very likely to cut off at some
size (perhaps 2,500 or 1,000). In Saskatchewan, even with a cut off at 1,000, this left Census
divisions with less than 3 places of recorded population. Thus it was natural to ask whether
there was any easy way to approximate the missing populations.

June 13, 1990
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exhibit 3

Observed birth rates and intervals based
on $2.98, £2.46, and $2.14 applied to (2 + 4(births))"2
(irrelevant decimal places given)

Division  birth rate 1298 1246 12.14+

1 .169 JA359 2034 1412 1970 1446 1933
2 137 J012 1714 1086 .1646 1100 .1604
3 142 J082 1924 1146 1841 1186 .1791
4 155 d146 2171 1203 2089  .1271  .2007
S 164 1320 1996 .1374 1931  .1407 .1892

6 133 J226 1440 1244 1420 1255 1409
7 139 1149 1614 1187 1570 1210 .1544
8 155 J274 1909 1324 1819 .1356  .1812
9 .158 J262 1908 11313 1846 .1345 1809
0 143 082 (1924 1146 .1841 1186 .1791

1 131 J214 1413 1231 1395 1241  .1389
12 185 J436 2215 1500 2167 .1539 .2120
13 167 1334 2037 L1389 1970 1424 1929
14 162 J335 1951 1384 (1893 .1415 1857
15 .148 J270 1673 1303 1636 .1324  .1613
16 137 J112 1684 1440 2047 1634 .2416
17 A7 1440 2047 1489 1990 .1519 1955
18 201 1634 2426 1697 2351 1736 .3305

«This value lies between the approximations of Sections 4 and 10 (2.16) and Section 11 (32.11)
for the tight SQL coefficient Using either $2.11 or £2.16 instead of +2.14 would make a small
change in this table and no visible change in the pictures derived from it (for example, $2.16 is
only 1/16 of the way from 2.14 10 2.46!).
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Many extreme J -shaped distributions, like those of populations of places in some local
area, show behavior analogous to the rank-size rule of (Zipf's Law) according to which

(size)(rank from above) = constant

so that

size of g™ largest place = SONSEML

(Systematic deviations, especially for small g or large g, are probably more common than
close agreement. For some instances, see Tukey 1977, Chapter 18.)

This approximation corresponds to simple ratios for the sum of squares of sizes of all
places smaller than a given place as a multiple of the squared size of that place and its rank g.
Exhibit 4 shows the the results for small g.

exhibit 4
_about_here

In using this approximation, we need to take account of any cut-off on the list. Some
examples from exhibit 2 will illustrate the opportunities. Division 2’s second-sized place is
close to 1,000, so that we can enter exhibit 4 with g = 2 to get an approximate sum of squares
of sizes of all places from the third largest onward. Division 4 has a second-sized place above
2,000 and we know the third-sized must be below 1,000. Therefore we do better to choose a
third-sized size and then tum to exhibit 4 with g=3. The largest choice for the 3™-sized place
is just below 1,000. We have chosen 1,000 in such cases, preferring to overestimate the
remaining sum of squares somewhat.

Exhibit 5 shows, for each of the 18 divisions, the square roots of the sums of squares of
sizes

e for the largest place

o for up to 3 places of size 2 1,000

o for all places, approximated as just described.

It also shows these sizes (found as square roots) as fractions of the total population.

exhibit 5
_about_here

One important aspect of this table is the similarity of the orderings provided by most
columns both with each other and with those based on the last two columns of exhibit 2.

June 13, 1990
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exhibit 4

Approximate ratios of sum of squares of sizes
of all smaller places to the square of the size of the
g® largest place (based on rank-size rule)

g  ratio
645

1.58

2.56

[N

3.54
4.54
5.53

o\ h

6.53
7.52
8.52

\© 00 ~J




Division

6
11
7
15

9
8
16
2
1

17
14

5
13
12

3
4
10
18

(*) Square root of total squared population of 3 largest places (of size 2 1000) in the division.

Total

201K0
192K6
52K87
79K98

44K92
35K15
39K90
26K67
32K77

35K48
47K47
41K20
27K37
25K49

20K36
14K65
25K12
25K30

-7 -

exhibit 5

Equivalent sizes of largest place for the 18 divisions
(201K0 is 201,0xy, etc., and irrelevant decimal places are carried to show similarity of ratios)

Largest

162K61
154K21
33K94
31K38

15K34
74K 75
14K03
9K52
9K17

6K03
6K01
5K09
3K97
3K56

2K92
2K47
2K15
1K64

®

162K 64
154K28
33K9%6
31K79

15K45
14K85
14K08
9K57
9K37

7K23
8K54
6K89
4K87
5K13

3K46
3K40
2K99
1K64

(**)

164K66
154K31
33K98
31K85

16K02
14K94
14K17
9K 66
9K57

7K40
8K84
7K35
5K33
5K55

3K83
3K76
3K67
2K29

LT

809
.801
642
392

342
420
352
357
.280

.170
J27
124
.145
.140

.143
.168

086
065

(*¥T

809
801
642
397

353
423
353
359
286

204
.180
167
178
202

170
232
119
065

(*+)/T

809
801
643
398

357
425
355
362
292

209
187
178
194
210

.188
256
146
0951

(ttt)
16~2logy(**)

1.31
146
5.83
6.01

8.00
8.20
8.35
9.46
048

10.22

9.79
10.24
11.17
11.05

12.17
12.16
12.24
13.61

(**) Square root of approximate total squared population of all places in the division.

(**+) Here (*+) is expressed in thousands.

Notice that how far we go summing squares matters very little in the top half of this table.

Notice that ordering on "Largest” has produced a close approximation to order in each of the

six columns 1o the right.

Notice that the difference between (+)/T and (**)/T never exceeds .027 and that

the difference between 16-2log,(*) and 16-2log,(**) does not exceed 0.48,

and for all but the four smallest divisions does not exceed 0.26.
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Presumably each of these columns does a moderately reasonable job of displaying rurality-
urbanicity. We shall build our analysis here on the last column of exhibit 5, but we encourage
readers both to ook at other choices and to cross-plot some of these columns against one
another.

*  re-expression #

If we plot birth rate as a response, and 16~2 log,((*#)/1000) as a circumstance, we get
exhibit 6. Trend is clear, as is appreciable curvature.

exhibit 6
about here
A little trial urges us to use (16-2 log,((**)/1000))? as the circumstance, and leads to

exhibit 7, in which 5 divisions deviate to one side, while the other 13 lie reasonably well along
a straight line.

exhibit 7
about here

7. Apertures in the example

If we now use the style suggested in Section § to display birth rate against
(16 -2 ng;((*lﬂ)/lOOO))2 we get the picture in exhibit 8. Clearly a reasonable variety of
straight lines pass all apertures. At whatever approximation to 5% our approximate SQA'’s
provide, then, the data are individually-but-collectively consistent with a linear relation of
divisional birth rate to a simple measure of rurality.

exhibit 8
about here

It is clear that, as we would have anticipated, not all apertures contribute to restricting the
set of piercing straight lines. It thus seems natural to produce a skeleton version of exhibit 8
which shows only the aperture edges that provide additional restriction, beyond that provided
by others. Exhibit 9 provides this skeleton version, and includes the bounding positions of the
lines that pierce all apertures (solid lines) whose non-emptiness indicates that we are unlikely
to need any more complicated analysis. The dashed line is an eye-fitted line near the center of
the bundle of piercing lines. Finally, the dotted lines, joining SCL comers of the split-diamond
glyphs, indicates the range of possibilities for a true line (assuming that there is one).
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exhibit 6

Birthrate against log size, where size (= (**) from exhibit 5) approximates
the square root of the sum of the sizes of all places in a division
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exhibit 7

As exhibit 6, but with squared horizontal scale
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exhibit 9
about here

8. Further analysis

We can look harder at the data, in an overall, poorly informative way by summing the
standardized squared deviations of the observed birth rates from some fitted lines (standardized
to aliow for the standard deviations that are consequences of assumed Poisson distribution).
Doing this roughly, gives a sum of squares of 21.8, which is to be referred to 18 —2 = 16 or
18 — 3 = 15 degrees of freedom. A reasonable threshold for choosing further analysis would
probably be a ratio of 2 between sum of squares and degrees of freedom, which is clearly not
even approached. Since exhibit 8 offers no specific indications suggesting further analysis, we
are probably well advised to stop with our apparent linrear dependence of birth rate on a simple
measure of rurality.

It might be of interest to use actual populations of places under 1,000 and see what effect
this would have on the analysis.

9. Kinds of consistency

We have now looked at the Saskatchewan data (birthrate vs. rural urban index) in two
quite different ways - - both oriented toward: How well does the data fit a simple relation?
Do we seem to need to look further? It is probably time that we compared these approaches in
rather greater generality?

We could characterize the two approaches as one of small-group responsibility and
another of collective violence. If a set of SQL-based apertures cannot be passed, there is at
least one subset of 3 apertures that cannot be passed. Thus our feeling of inadequate fit can be
assigned to one or more subsets of 3. (This is assigning responsibility to the smallest possible
subset, since any pair of apertures (for different x -values) can be passed by each of many
lines.)

To look at a sum of squared deviations, by contrast, is to blend all deviations into an
unresolved whole. A positive result is a collective result! If we find a poor fit, but we are not
aliowed to look inside our omnibus statistic, we have no idea what it is that is mediating the
poor fit. All we know is that, collectively, the deviations are too large - - that there is t00
much collective violence to the deviations.

Some will say that we should make our choice between two such approaches on the basis
of power, but there are varied reasons why merely calling on the power conce,i 2ocs not
work.
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exhibit 9

Skeleton aperture plot for the Saskaichewan data

Solid lines = test of reasonability

birthrate of only a
straight-line fit
4
20 Dotted lines = Conﬁde'nce region
- : for straight-line fit
(provided one is
&9 is adequate)

¢ Dashed line = Eye-finted
: straight-line.

Horizontal scale = (16-2 log,(**)/1000))?




-10 -

First, we are in a multiresponse situation, and relatively high power in one direction is
likely to correspond to relatively low power in another. We are forced to think about, for
example, the least power for points on a hypersurface that encloses the null situation. Which
hypersurface?

The situation is probably clearest when we are comparing several y 's, with 1; = avey;,
and no other quantities enter. If one looks at the hypersurface
> —1})? = constant, the minimum power on that hypersurface is maximized by using the
collective violence statistic, ¥ (y; — 7). If, on the other hand, one looks at the hypersurface
range {n;} = constant, the minimum power on this hypersurface is maximized by the
2-value-responsibility statistic, range {y;}. It is not enough to ask for "power”, we must say
where we want the power.

Second, the pure concept of power is inadequate to deal with collective violence. The
idea of power grew up in the univariate situation - - usually a single comparison - - where the
value was either "up so-and-so” or "down such-and-such”, and where the sign of Student’s ¢
distinguished "up” from "down”. I, long ago, introduced the notion of "useful power" as the
product of mathematical (pure) power and the chance that if a definite answer were given, we
would know what it meant. A moment'’s reflection shows that the useful power of any
collective violence statistic is either zero, or very nearly zero. This is certainly the case for
statistics based on Y (y; - ¥ )% If we accept "useful power" as a reasonable concept - - a
reasonable criterion - - then we will have to eschew collective violence statistics, and will
probably find ourselves working with small-subset-responsibility statistics.

This is as true for "ave{y| x} may be linearly dependent on x" as it is for
“the n; = ave(y; } may be all equal” or as it is for situations much more complex than either
of these.

10. The case k=3
If k=3, and the values of x are equally spaced, we can write the values of y as

y.= u._+u0/\f§-u,/‘5 —uzl‘fg
yo—uo+uo/\f§ -2u2/‘f6-

Vo= By +uo/V3+u V2 +uy/V6

with the null hypothesis represented by ug u, u, all uncorrelated Gaussians of equal variance,
which we may as well take to be unit variance. The deviations of the y’s from a straight line

June 13, 1990




-11 -

are specified by the terms in u,. A line will just sneak through apertures of tu,s, (where
ave{sZ ) = 1) based on these y’s when | (4s/V6) = (=2u,/V6)| > H(a~(—a))s,. The boundary

case is
3“2 1
2a=—.—
6 sy
2 U
a=——(—
2«/6(.:\,)

Since u,/s, is distributed like Student’s ¢ on v degrees of freedom, we get

3
a =T 1[25%] = 6124 1,(25%]

with the result

vik 1 1.2 15 2 3 6 oo

SQL coefficient 1.948 (1.80) (1.65) 1498 1.385 1.287 1.200

Going to the tables in Technical Report 300, we see that

v/k 1 15 2 3 6 oo

tight SPL coeff — SQL coeff (1.01) 67 58 51 46

f

severe SCL — SPL 143 - 97 8 .75 .70
.68(severe SCL —severe SPL) 98 -~ 66 .58 51 .48
tight SPL 296 -~ 217 197 180 1.66

diff of last two 198 ~ 151 139 129 1.18

{

tight SQL coeff (see above) 1.95 150 138 129 1.20

(The parenthetic values are both boldly extrapolated, so their disagreement can be neglected.)

As the last two lines show

tight SQL = tight SPL coeff-.68(severe SCL ~ severe SPL)
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is a very good approximation. This relation has been developed for a very special case (k=3)
of "tight” coefficients; brave people may wish to try it for general cases of tight coefficients.

11. An alternative approach
Another way to approximate SQL is to ask for what Q-value (left-hand area) would SPL

equal the SQL for our standard tail area (Q = .95). A little inquiry into Harter - - leads to the
following results

v/k 1 2 3 6 oo

Q" 863% 844% 826% 807% 79.5%

which is interesting, but not nearly as a simple approximation.

For the Saskatchewan example (v = e, k=18) the use of 79.3% would lead to an SQL of
4.22/2 = 2.11, not too far from the 2.16 found by the other extrapolation.

12. Appendix on severe SQL’s

We now tum to the "severe” or "Bonferroni” approach. If we consider our "does a line
pass through” problem carefully, we see that some line will pass all apertures if some line
passes each set of 3 apertures. (We can see this inductively by starting with 3 apertures with
smallest x's, and adding apertures one at a time from left to right. If there is difficulty at any
step, the closest that a line passing all the previous apertures can come to passing the aperture
being added will be determined by a line that contacts the edges of rwo of the previous
apertures. Thus those two apertures, and the new aperture, make up a set of 3 that cannot be
passed.)

For (x,.y,) (xp.yp) and (x,,y.) with x, € x, € x_ the test statistic for passing is

Yy = (xc=2p Yo + (Xp—X4)Yc
b Xe = Xa

whose variance is

There are

(’;) = k(k~1)k=2)/6

such triples, each of which can be too positive or too negative. Thus Bonferroni operates with
k(k-1(k-2)/3 ends, and a 5%/(k (k-1)(k~2)/3) = 15% /k (k—1)(k-2) tail area for each.
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The values of R = 1.5+.5¢% range from 3/2 to 2, where ¢ varies from O to 1 and is likely
to be somewhere near uniformly distributed. An approximate Bonferroni would use an
averaged 2. If we put 1/3 for our averaged t2,R = (3/2) + (1R”)(1/3) = 5/3 =166. (Some
more detailed calculations suggest 1.64 may be a more precise value, but the difference is
unimportant here.)

Thus an approximate Bonferroni calculation, usually slightly conservative because of the
actual distribution of ¢ and because of the nature of the averaging involved finds

severe SQL's at 1, [15%/k (k—1)(k-2)](V1.665,)

Values thus obtained are given in exhibit 10. Notice that most entries have

severe SQL coefficient > severe SPL coefficient

although we know that

tight SQL coefficient < tight SPL coefficient.

exhibit 10
_about here_
The only reasonable conclusion is that trying to control the average number of triples
which cannot be passed is 100 far away from controlling whether one or more triples cannot be
passed for "severe” to be a reasonable choice.

This does not seem so surprising when we realize that, for k=18 (as in the Saskatchewan
example) there are 18(17)16/6 = 816 triples generated by 18 apertures. Correlations of
behavior of one triple with that of another must be substantial, and "failure to pass” must tend
to occur, even in the null situation, for 2 or more triples at a time.

Thus we need to use tight SPL's or some close approximation thereto.

June 13, 1990




- 13a -

exhibit 10

Severe SQL coefficients
(calculated as 1, [15% 7k (k~1Xk-2)] (¥1.66) see *+ below)

k vik=1 vik=2 Vv/k=3 Vik=6 Vik==

3 2050 1576 1457 1307 1262
4 2780 2065 1.89%0 1740 1.609
5 3074 2307 2116 1952 1808
6 3.190 2452 2261 2094 1947
8 3297+ 2621 2442 2282 2140
10 3.329+ 2.721+ 2556+ 2408+ 2214

12 3339+ 2790 2639+ 2501+ 2375
15 3343+« 2866 2731+ 2.606+ 2492«
18 3.345¢ 2923 2801+ 2.688+ 2.582+

20 3347+« 2954 2840+ 2733+ 2.02+
25 3355« 3.019+ 2919« 2825+ 2735+
30 3366+ 3.079+ 2982+ 2897+« 2816+

40 3.392¢ 3.152+ 3,078+ 3.007+ 2.939+
50 3419+ 3215+ 3.151= 3,090+ 3.303«
60 3.445¢ 3266+ 3210+ 3.156+ 3.103+

sLarger than severe 95% SPL (!)
«+Calculated using V1.66 factor - - maybe 1% too large
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